જો $a = \sin \frac{\pi }{{18}}\sin \frac{{5\pi }}{{18}}\sin \frac{{7\pi }}{{18}}$ અને $x$ એ સમીકરણો $y = 2\left[ x \right] + 2$ અને $y = 3\left[ {x - 2} \right]$નો ઉકેલ છે, જ્યાં $\left[ x \right]$ એ $x$ નો પૂર્ણાક ભાગ દર્શાવે છે તો $a$ =
$\left[ x \right]$
$\frac{1}{{\left[ x \right]}}$
$2\left[ x \right]$
${\left[ x \right]^2}$
સાબિત કરો કે, $\cos 2 x \cos \frac{x}{2}-\cos 3 x \cos \frac{9 x}{2}=\sin 5 x \sin \frac{5 x}{2}$
સમીકરણ $\tan x=-\frac{1}{\sqrt{3}}$ ના મુખ્ય ઉકેલ શોધો.
જો $\alpha ,\beta ,\gamma $ એ અનુક્રમે રેખાએ $x, y$ અને $z$ અક્ષો સાથે બનાવેલ ખૂણાઑ છે કે જેથી $2\left( {\frac{{{{\tan }^2}\,\alpha }}{{1 + {{\tan }^2}\,\alpha }} + \frac{{{{\tan }^2}\,\beta }}{{1 + {{\tan }^2}\,\beta }} + \frac{{{{\tan }^2}\,\gamma }}{{1 + {{\tan }^2}\,\gamma }}} \right) = 3\,{\sec ^2}\,\frac{\theta }{2},$ થાય તો $\theta $ ની કિમત મેળવો
જો $\sin 2\theta = \cos \theta ,\,\,0 < \theta < \pi $, તો $\theta $ ની શક્ય કિમત મેળવો.
અહી $S={\theta \in\left(0, \frac{\pi}{2}\right): \sum_{m=1}^{9}}$
$\sec \left(\theta+(m-1) \frac{\pi}{6}\right) \sec \left(\theta+\frac{m \pi}{6}\right)=-\frac{8}{\sqrt{3}}$ હોય તો . . .